Questions: How do forest types differ in their distinctiveness among islands in relation to environmental and anthropogenic disturbance gradients? Are biogeographic factors also involved?
Location: Tonga, ca. 170 oceanic islands totalling 700 km2 spread across 8° of latitude in Western Polynesia.
Method: Relative basal area was analysed for 134 species of woody plants in 187 plots. We used clustering, indirect gradient analysis, and indicator species analysis to identify continuous and discontinuous variation in species composition across geographical, environmental and disturbance gradients. Partial DCA related environmental to compositional gradients for each major forest type after accounting for locality. CCA and partial CCA partitioned observed compositional variation into components explained by environment/disturbance, locality and covariation between them.
Results: Differences among forest types are related to environment and degree of anthropogenic disturbance. After accounting for inter-island differences, compositional variation (1) in coastal forest types is related to substrate, steepness and proximity to coast; (2) in early-successional, lowland rain forest to proximity to the coast, steepness and cultivation disturbance; (3) in late-successional, lowland forest types to elevation. For coastal/littoral forests, most of the compositional variation (71%) is explained by disturbance and environmental variables that do not covary with island while for both early and late-successional forests there is a higher degree of compositional variation reflecting covariation between disturbance/environment and island.
Conclusions: There are regional similarities, across islands, among littoral/coastal forest types dominated by widespread seawater-dispersed species. The early-successional species that dominate secondary forests are distributed broadly across islands and environmental gradients, consistent with the gradient-in-time model of succession. Among-island differences in early-successional forest may reflect differences in land-use practices rather than environmental differences or biogeographical history. In late-successional forests, variation in composition among islands can be partly explained by differences among islands and hypothesized tight links between species and environment. Disentangling the effects of anthropogenic disturbance history versus biogeographic history on late-successional forest in this region awaits further study.
Abbreviations: GA = Group averaging; MRPP = Multi-response Permutation Procedure; NMS = Non-metric Multidimensional Scaling; pCCA = Partial CCA.
Nomenclature: Smith (1979, 1981, 1985, 1988, 1991); for species not treated by Smith: Yuncker (1959), Whistler (1991), Wagner et al. (1999).